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COMPUTATIONAL STULY OF MAGNETIC DAM EFFECTS
IN A HIGH IMPEDANCE DIODE

I. INTRODUCTION

The NRL Light Ion Fusion Program has experimentally demonstrated high
efficiencies for the production of light ion beams using low impedance
diodes. On Gamble II in 1-2 ohm operation well over 70% of the diode power
is typically carried by the ions.l+2 Current and planned experiments call
for the design and use of diodes on the high impedance pulsed power generators
of Harry Diamond Lab's AURORA and Sandia National Lab's PBFA II modules.
Since impedance matching is essential for efficient transfer of power from
the machine to the dicde, these new diodes must be designed for 4-20 ohm
operation. Unfortunately, it has been experimentally determined that
efficiencies of only 20-50% can be obtained in this operating regime using
traditional axial diode configurations.3 The development of techniques for
boosting these relatively low ion production efficiencies is today the
subject of intense research and speculation. This paper reports on the
results of one such theoretical effort. Although the specific diode design
which was simulated did not achieve the desired boost of ion efficiency, an
examination of its shortcomings clearly indicates both a cause as well as
possible solutions. These observations bear on high impedance axial diodes
in general and lend a new insight into their peculiarities which may
eventually assist in a design breakthrough.

Specifically, the diode geometry under consideration here would be
suitable for operation on AURORA. It is drawh to scale in Figure 1 with all
significant dimensions given, as indicated, in centimeters. Although the
latest NRL/AURORA ion diode has an anode stalk almost 25 cm in radius, its
cathode shank remains about 5 cm in radius. The differences caused by
modifications to the electric field beyond R = 7 cm are assumed to be
minor, since they do not directly effect electron motion in the active
anode-cathode (A-K) gap. The diode modeled was chosen for positive polarity
operation. That is, the resultant ion beam would be traveling through the
cathode shank in a direction away from the generator and pulse-forming line.
The inner and outer radii of the vacuum feed line are 8.0 and 10.0 centimeters,
respectively. The anode is a simple hollow cylinder with a wall one-half
centimeter thick which is capped by two 4 mil. polyethylene foils separated
by a one-quarter centimeter vacuum gap. It is important that the electron
beam traveling through the cell behind the anode foil be charged and current
neutralized. It is widely believed that a gas fill at several torr pressure
could provide the assumed neutralization. A thin wire is located along the
anode's central axis and is electrically connected to it via the inner foil.
Current of arbitrary magnitude may be fed through this wire from an external
source which is independent of the pulsed power generator. Such a current
of I, amperes will create an azimuthal magnetic field behind the foil of

Manuscript submitted August 24, 1981,




CATHODE

XR\Y\ LR
SONNIONY

\\\\ \Q\ -

AN

VACUUM _,

ANODE FEED LINE

——— 3.5 ——

PERRSAYIN
PR

.

Fig. 1 — A scale drawing of the magnetic dam diode. (All dimensions are in centimeters.)




0.21, gauss. If sufficiently strong, this By can bend the

r

magnitude

trajectories of electrons entering the anode gas cell near r = 0 in such a

way as to "reflect" them out of the anode foil again at a higher radius.

This effective barrier against axial electron flow is the essence of thc
magnetic dam concept. It is seen as a possible mechanism for increasing the
average lifetime of a typical electron in the anode-cathode (A-K) gap. This
should increase electron space charge for o given electron current, increcasing
the net ion emission.

In the given diode, the A-K gap was chosen to be one centimeter to
allow approximately 6-8 ohm impedance at the fixed 4 megavolts applied.
Finally, the hollow cathode has an outer radius of 5.0 cm. with 1.0 cm. shank
thickness. A 4 mil polyethylene foil is recessed 0.6 cm into the shank to
enclose a low-pressure gas fill similar to that of the anode and serving a
similar charge/current neutralization role for the emerging ion beam. This
cathode gas cell plays no part whatsoever in this simulation.

The analysis of this diode begins in Section II with a theoretical
discussion of the "magnetic dam" principle. This will explain the motivation
for conducting the simulation. Section III will transition into the actual
numerics of the modeling, examining the details of the code that was employed.
Specific approximations and assumptions used in the model will be pointed out.
This report will conclude in the fourth section with a presentation of the
simulation results complete with suggestions for follow-on work.

II. THEORY OF THE MAGNETIC "DAM"

The treatment of electron trajectories in an azimuthal magnetic field
and in the absence of an electric field may be derived from an analysis of
ion orbits due to Goldstein and Ottinger.4 The particle orbits may be
determined from a simple conservation of energy principle. Consider an
electron traveling at velocity, ¥, impinging on the anode foil at some
angle, €, and entering the anode gas cell at radius, Ry, as shown in Figure 2.
In the gas cell, it is assumed to be acted upon only by the azimuthal magnetic
field there. Its energy must therefore remain constant and

Y =(1- = )-% = constant,. (1)

where

ve = v + v . (2)

For an electron which has just crossed a cathode-anode gap with electric
potential difference, V, in megavolts, it may be further written that

\'
0.511

(3) '

From Figure 2,

v, . = v sinf. (4)
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Fig. 2 — Geometry of electron penetration into the anode gas cell




Combining Egs. (1), (3), and (4) yields

zo v+0.511

/ 2
v =csin6v1-<o'5—il) (5)

Furthermore, Eqs. (2) and (4) give a direct expression for the time
dependence of the electron's radial velocity in the gas cell,

v(t) = % \/vgo sin"? 6 - v2(t) . (6)

The force acting upon the electron is given by the relativistic Lorentz
Law to be

de > -
Yymg 32 = -2 vp o x Ba(x) =-§ G Bg(n) . (7

where m_ is the electron rest mass. This equation may be rearranged and
integrated from the foil entry point (O,RO,O) out to some point along the
electron's trajectory in the cell to yield

r

-e
t) - v = —
vz ( ) pAe] moc Y

Bg(r) dr . (8)
Fo
As stated previously, the magnetic field in the gas cell generated by a
current, I,, flowing through the axial wire is simply Bg(r) = 0.2 I,/r.
Equation (8) may thus be rewritten as

Vg =V, (l - X (r)) {9)

(10)

where

r
x(x) = ————— I 1n =
m zo ¥ Ry

with I, expressed in amperes and all other quantities in c.g.s. units.
The orbit expression linking r explicitly to z is simply the ratio of the
respective velocity components given in Egs. (6) and (9),

ar vy _ * Vsin2e-1 4 y(r) @ (1) (11)

dz v, 1 -x(n

The integration of Eq. (l1l) yields the exact trajectory of an electron
traversing the gas~filled anode for specific values of 0, V, I, and R,.

It is instructive to calculate sample orbits for various combinations
of parameters. In all cases, V is fixed at 4.0 megavolts in order to
correspond to realistic AURORA ion diode operations. Useful choices
for I,, can be estimated by a rather simple calculation. Consider a 4 MeV




electron with an entrance angle of 90° beginning its gas cell trajectory
at a radius of 1.0 centimeter. Assume that it remains in a uniform
azimuthal magnetic field of magnitude equal to that found at the exact
center of its circular gyration in the actual gas cell. Therefore, for a
desired exit radius of 5.0 centimeters, the value of Bg (r) at r = 3.0 cm.
is taken as a constant over the entire electron trajectory. In order to
generate the field strength needed for a 2.0 centimeter relativistic
gyroradius, a wire current of 63.75 kiloamps is required. This reasoning
leads to the following selection of values for I, to be tested: 65 kA,

130 kA, and 300 KA.

For the first set of sample orbits, an entrance angle of & = 900 is
chosen. This choice leads to an orbit equation given by

dr _ & \/ﬁxir) (2-x(r))

az 1 (1) (12)

The trajectories for R, = 1.0 and Ry = 2.0 cm. are plotted in Fiaure 3.
It can be seer that I, = 65 kA generates too weak a field to reflect
electrons with R, greater than 1.0 cm. back into the A-K gap. The orbit
for Ry, = 1.0 cm 1s marginal. On the other hand, I, = 130 kA produces the
desired effect for R, less than 2.0 cm and the I, = 300 kA case is even
better.

In a realistic pinch reflex diode configuration such as that being
modeled, one expects to see a focused electron flow in which electrons
magnetically self-pinch to smaller radii as they cross the gap. It is
therefore important to attempt a similar orbit calculation for non-normally
incident electrons. A reasonably straightforward, yet probably illustrative
example would be electrons entering the gas cell at 45°. This choice of 8
reduces Equation (11) to

ar _ *Wisn (2o (13)
dz 1-x (x)

A new set of sample orbits is calculated and shown in Figure 4.

Comparison of the two sets of plots reveals immediately that non-
perpendicular injection leads to electrons exiting the gas cell at
significantly lower radii. This is reasonable considering the longer
period of time a given electron spends in regions of relatively higher 3
magnetic field strength. Their orbits consequently experience greater
I >nding. The overall effect for all but the 65 kA cases is the satisfactory

reflection of all electrons with Ro < 2.0 cm back into the anode-cathode gap
where they can enhance ion emission.

III. THE NUMYERICAL SIMULATION

A. The Simulation Code

The computer code utilized in these studies is a 2-D version of *he
2%-D DIODE2D? particle-in-cell (P.I.C.) code. Inhomogeneities are allowed
in the radial (r) and axial (z) spatial dimensions. Complete azimuthal
symmetry is assumed. In addition , the r- and z- momentum components are
retained. The "particles” in this model are arially-centered rings of charge.
In reality they are macroparticles carrying many times an elementary charge
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but retaining the physical charge-to-mass ratios of the protons and electrons
which they represent. Arca weighting (i.e., linear interpolation) is used

to couple these charges with the electric and magnetic fields calculated

over a fixed set of grid-points in the region of interest. The fields thus
interpolated to the particle positions act on these charge-current rings by
way of the relativistic Lorentz force equation. The field treatment is
electrostatic. In this :tense the code does not perform a true "simulation"
since the time-depcndent equations are not observed. Rather the treatment

is "quasistatic". Equillibrium solutions to various diode geometries are
sought, The "timesteps" which appear in the code are actually snapshots of
the system while it seeks to relax toward its steady-state configuration.

In order to determine the electric field within the diode region, particle
charge densities are distributed over a fixed grid and the discrete Poisson's
equation 1is solved.® The code permits irregular conducting boundaries inside
the computational region. The treatment of such internal boundaries entails
the use of a "capacitance matrix"”. The internal surfaces thus created are
held at predetermined electric potential values. Direct radial integration
of the axial current densities over the mesh yields the azimuthal magnetic
field via Ampere's Law. The outer radial boundary of the diode region may

be either conducting or free-space. The electrostatic potential, o , is

set constant along all conducting boundaries. BAlong radial free-space
boundaries, p is graded logarithmically and along axial ones, linearly.

At the start of a typical computer run, the computational diode region
is a complete vacuum devoid of particles. The electric potential is pre-set
along the entire boundary as well as along all internal conducting surfaces.
The emission of the ions is permitted anywhere along fixed regions of the
anode surface. Electrons are emitted along the entire cathode, including the
inner and outer shank surfaces. The value of the perpendicular electric
field at a given emission point determines the total charge (i.e., number of
particles) that will be emitted there. At the beginning of a timestep, the
electric field at a surface specifies the net charge density on the surface
via Gauss' Law. The surface integral of this density over a cell width
around a given grid point vields the net charge which is emitted there for
that timestep. Prior to the actual particle-pushing the clectric field is
recalculated taking into account the newly emitted charge.

All particles are then pushed according to the relativistic Lorentz
force law using the area weighted electric and magnetic field values inter-
polated at the particle position from the four necrest grid points. After
pushing in each timestep a position checl is performed on each particle to
determine if it is inside a conductor or outside the mesh boundaries. 1If so,
the particle is appropriately absorbed and so recorded On the other hand
if it is an electron in an anode foil, then it is passed to a scattering sub-
csoutine which employs a one-step Monte Carlo algorithm to calculate energy
loss and deflection. Upon completion of this sorting process, the charge
and current density associated with each unabsorbed particle is distributed
over the four rearest grid points using the some linear interpclation scheme
in reverse. This yields a complete array of values for the chorge density,

p , and the current density, Jd,, over the computational mesh. Poisson sol-
ving these arrays yields , from which Eq and EZ are calculated. The azi-

muthal component of B is obtained through girect integration of J  over the
qgrid. Quantities of interest are then extracted and output via diacnostic

©°




subroutines. The code then cycles to the next timestep for particle
emission.

Finally, it should be noted that the numerics of the particle pushing as
well as the potential solving has been completely "vectorized"”. Thus, the
momentum, position, and fiel? components associated with the entire ensemble
of particles are treated as macro-vector quantities. Arithmetic operations
performed with them are accomplished in a completely vector-array format.
This property of the code permits efficient running times on the most ad-
vance scientific computers. (Of course, the interpolation of :, 3, E, and
B values between particle positions and grid points requires random accessing
of array points and this process cannot be vectorized.)

B. The Computational Experiment

At the outset of this simulation, as with any other, great care was taken
to minimize the numerical complexity/cost while preserving all aspects of the
essential physics to be treated in the problem. It was this desire to min-
imize expense that motivated the use of a 2~D version of DIODE’L rather than
its standard 2%-D form. (The standard version allows for solution of self
By and B, field components which are never generated here.) The second most
significant economization involved the minimization of the phvsical size of
the computational region. It was deemed uneconomical as well as physically
unimportant to fill the entire diode cavity with the numerical grid. As can
be ceen from Figure 1, that would result in a mesh measuring about six centi-
meters axially by ten radially and would waste computational effort by
including space devoid of particles. Instead, the axial extent of the grid
was bounded by the plane of the cathode foil and by the inner anode foil.
Similarly, its radial limit was set as the inner radius of the anode cylinder.
The only obstacle to this reduction of grid extent was the free-space part
of the new, artificial boundary. DIODE2D's field solving algorithm requires
fixed potential values along all the boundaries. For the full diode with its
concducting walls this is, of course, no problem. Even the open segment of
the vacuum feed line entrance is trivial, since a simple logarithmic poten-
tial grading can be used there (assuming the presence of no particles there).
The setting of potential values along the new, ad hoc boundaries cannot be
accomplished intuitively. Instead, a two-step process is employed. First,

a capacitance matrix field-solve is carried out for the entire diode cavity
as pictured in Figure 5. It is assumed that no "sources" (i.e. charges or
currents) are present anywhere. Then the new "boundaries" are located as
indicated ''y the dotted lines, and the free-space potential values are noted.
Finally the new computational region is set up with those values imposed
along the appropriate edges. As long as no particles stray too "near” those
ends, ¢ should remain fairly constant there. In any case, the bulk ion and
electron flow should be too "remote" tc feel any peripheral abnoimalities.
The vacuumpotential solution for the actual simulation grid is shown in
Figure 6. Note that the axial scaling is much finer than the radial in order
to more fully appreciate the field profiles.

The final computational grid is depicted in Fiqure 7. It is spanned by
66 data cells in the axial dimension and 77 radially. Poisson-solving is
accomplished on the interior 64 X 75 mesh, leaving a monolayer of "guard"
cells along the boundary. Simple Gaussian field emission of electrons i:
permitted all along the heavy-lined surfaces of the cathode as shown in the

10
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figure. The same is true for ion emission along the outer surface of the
anode foil. Note that no electron emission is allowed in either the region
around point (2,39) of the inner cathode shank surface or along the rear of
the outer shank. Electric field values are expected to be too imprecise
there. The timestep was fixed at 1.5x1012 second for most of the runs pre-
sented although smaller timesteps were used near steady state to test the
stability of the equilibria. Another interesting point is the numerical
"thickness" of the outer anode foil. Although physically treated as 4.0 mil
thick polyethelene by DIODE2D's electron scattering algorithm, this foil spans
three full cells spatially. This is an artifact to ensure that no electron
will be able to traverse the foil in a single timestep. Since no fields act
on particles inside the foil, this false thickness does not impact on the
physics of the simulation itself. Among the most important of the code
diagnostics are a complete record of time-averaged emission and absorption
profiles for each of the surfaces, sample particle position plots, and
electrostatic equipotential plots.

The numerical implementation of the physics of the magnetic dam involved
non-trivial manipulation and reorganization of the standard DIODE2D algo~
rithms. The region inside the gas cell, behind the inner anode foil was
designed to be completely free of all electric and magnetic fields except for
the azimuthal B-field due to the current-carrying wire along the axis. There-
fore, no solutions of Poisson's equation nor radial integrations of Ampere's
law were necessary there. Only Bg = 0.2 I,/r need be enforced. Thus, no ex-
tension of the field-solving and charge/current apportionment mesh was called
for. Instead, the standard electron-absorbing character of the rightmost
boundary was changed to complete transparency to electron flow. The particle
accounting routines in the simulation were charged, such that an electron
hitting that edge was not removed from the "active' particle list. Instead,
it was given a special "label" which told the particle pushing subroutine to
act on it only with a By appropriate to its radial displacement, r, and to
the I, chosen for the wire current.

IV. RESULTS

In the initial simulation runs, the diode voltage was set at four mega-~
volts and electron emission was turned on all along those cathode surfaces
indicated in Figure 7. To limit the diode impedance, proton emission along
the anode foil was not permitted beyond a radius of 5.0 centimeters. The
early development of electron and ion flow patterns proceeded as illustrated
in Figures 8a and 8b. In each plot of sample particle positions, note that
the axial and radial dimension scales are not the same. Each frame measures
7.5 cm radially and just under two centimeters axially. The lower border
of each frame is the diode centerline. In looking at these pictures, bear in
mind that these are glimpses of a quasi-static simulation of particle flows
trying to relax into a steady state. They do not represent the actual evolu- )
tion of the physical system. Only the final picture for each set of para-
meters may coincide with experimentally realizable diode operation. It is
those final steady-state pictures which comprise the core of the simulation
results. One other thing to bear in mind is that in a physical diode, ion
emission is not generally initiated simultaneously with electron emission.
Rather, time integrated electron flow to the anode foil deposits cither
sufficient amounts of energy over the impact regions to cause vaporization
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and ionization or sufficient amounts of charge to cause surface flashover and
ionization. 1In either case, the anode plasma thus formed acts as the source
for protons in the diode.

Keeping in mind that only the equilibrium state will be "correct'" it is
nevertheless instructive to follow the sequence of events in Figure 8. At
T = 200 At the newly emitted ions have bearly moved. The electron flow
governed by its strong self-fields takes the form of two distinct streams.
The numerical restriction of particle emission strictly to data cell centers
allow for streamline tracing in all but the turbulent regions. In this far-
from-steady condition, the electron current emitted is about 580 kiloamps,
while that collected is a mere 240 kA. Emitted ion current is erratic, but
appears to be around 150 kA. At T=400 At, the ions have advanced signifi-
cantly with those at lower radii making up the vanguard due to the electric
field enhanced by the focused electron charge near R = 0 at the anode.
Attracted by the previously unneutralized ion space charge, the electron
flow has unified into a single, neatly reflexing stream. (Note that in this
run, the inner anode foil which forms the rightmost boundary of each frame is
taken to be an electron-absorbing, solid conductor.) Notice that the regions
or densest electron space charge at lower radii correspond to the space
occupied by the advancing ion front. The net emitted and collected electron
currents are 600 and 300 kiloamps, respectively, while ion emission has risen
to about 350 kA. Turning to Figure 8b, T= 600 At reveals the ion front
racing along near its full velocity. It is just about to make contact with
face of the cathode shank, Two important characteristics of the electron
flow deserve mention: 1) this flow is strongly pinched toward the center of
the anode without much apparent reflexing (very typical of high impedance
diodes), and 2) most of the electron space-charge is concentrated in regions
containing ion charge. At this time (Ig), .. = 600 kA, (Le)co1l = 300 KA,
and (Ii)emit = 230 kA. Finally, by T = 800 At, the near-equilibrium flow
has set in. FElectrons completely fill the inner diode cavity. The strongly
pinched electron flow remains while the ion streams are fairly uniform. A
word of caution -~ the sparsely dotted area in the ion picture is an artifact
of the non-random particle plotter; it does not translate to an actual absence
of ions there. This configuration was allowed to continue for additional 200
timesteps. At that point (see Figure 9), the equillibrium currents were
g = 326 kA and I; = 287 kA. This total current of 613 kiloamps translated
to an impedance of 6.5 Q0 which was too low for our desired operating regime.

In order to correct this, ion emission from the anode foil was "turned
of f'" opposite the cathode shank. This could be accomplished experimentally
by overlaying the anode foil with a metal foil there. Protons were then
only injected from R = 0 out to the last cell just below the shank inner
radius, R = 4.0 cm. The system evolved for another 1000 timesteps to the
flow pattern depicted in Figure 10. Very little change from the electron
flow of Figure 9 can be detected. At this stage, note that the inner anode
foil is still taken to be a solid, electron-absorbing surface. The new
quasi-static currents were I, = 264 kA and 1; = 214 kA, yielding a net
impedance of 8.4 { for the diode. This was chosen as the reference steady-
state against which the magnetic dam results are to be compared.
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Retaining the same voltage, geometry and emission surfaces as those
used for the 8.4 Q reference case, the magnetic dam was then "turned on" by
sending 65 kA through its central wire. The new particle positions for T=
2400 At are shown in Figure 11. There are two things immediately apparent:
first, the radial deflection of the electron flow due to the gas cell is un-
acceptably large as might have been predicted from Figures 3 and 4 and,
second, an improved particle position plotter is required in which the z -
range is extended into the "gas cell" so that the electrons there can be
plotted. To remedy the first prcblem, I,, was doubled to 130 kiloamps. In
order to alleviate the second, the axial width of the plotting page was in-
creased from 64 AZ to 100 AT = 3.0 centimeters. Before moving on to this

new case, it was recorded that the quasi-static currents were I, = 309 kA
and Ii = 232.5 kA. A true steady-state had not been reached, but it was
decided not to invest additional funds to pursue such a non-promising run.

In addition to the doubling of Iy, the double anode foil configuration
was eliminated for the remainder of the simulation runs. Referring back to
Figure 1, the inner foil to which the wire was originally attached has now
been completely removed. The gquarter-centimeter vacuum gap is now treated
numerically the same as the rest of the gas cell with the wire now running
all the way to the outer anode foil. To accomplish this change in physical
set-up required only the shifting of the electron "flag" setting boundary
from 2 = 64 A Z to Z = 56 A Z ( See discussion at end of Section III). The
original double~foil configuration probably contributed little to the mag-
netic dam physics but only served the practical experimental purpose of re-
taining a solid Iy current path for use after vaporization of the outer,
proton-source anode foil.

As already stated, the first run using this new configuration was
carried out for the case of Iy = 130 kiloamperes. Snapshots of the equili-
brium electron and ion flows are shown in Figure 12. It appears that sign-
ificant electron flow still extends beyond the right boundary, 1.32 centi-
meters from the anode foil. Referring back to Figure 4, this should not be
surprising. Electron trajectories beginning at R = 2.0 cm at 45° extend al-
most 1.9 cm. into the gas cell. The even steeper angle injection suggested
by the cathode-to-anode electron streaming should easily account for even
wider ranging electrons at lower radii. One particularly disappointing as-
pect of the picture is the configuration of the electron charge density at
the anode. An enhanced electron cloud can clearly be seen behind the anode
foil, in the gas cell. Only a very thin electron layer appears in ‘ront
of the foil where it is needed to enhance the ion emission. This observation
is borne out in the equilibrium diode currents of I, = 330 kA and Iji = 244
kA. The ion current increase is modest over the I, = 0 case. Much more
significant, however, is the even greater increase in the electron current.
The net result has been a decrease in diode impedance of over one ohm while
the ion production efficiency has actually dropped slichtly. This is a
crucial point which will be discussed later.

One obstacle that may be impeding the increase of ion efficiency
is the wide disparity between the strengths of the oppositely directed Bg
fields on either side of the anode foil. These fields are proportional to
the respective axial currents which, inside R=5.0 cm, are -574 kA on the
left~hand side, and +130 kA on the right-hand side. Clearly, any electron
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reflected back into the A-K gap will be quickly turned back into the gas cell.
It "r" position will also be increased, resulting in a oet outward radial
electron flow. Thus, judging from the orbits of Figure 3 and 4, a typical
electron might be bent back into the anode-cathode gap once below a radius

of four centimeters. There, it will see a reverse Bg approximately three
times as great as that in the dam gas cell. After a gap drift time relatively
short ir. comparison to that in the gas, the electron will be reflected back
through the foil into a Bg considerably weaker than that it had experienced

in its previous trek through the gas. Thus, this "relative dwell time"
problem snowballs with increasing radius as the :as Bg decreases, while the
gap Bg increases. Reflected electrons spend progressively less a

fraction of their time in the gap and progressively more in the gas at

larger values of "r'" where the larger electron gap dwell times would be fuelt
over larger ion emission areas. In an attempt to redress this imbalance,

a larger value of I, was tested.

Although it would probably be somewhat difficult to accomplish experi-
mentally, the current in the anode cell wire was boostcda to 300 kA and the
simulation was allowed to continue. A steady :itate was arrived at about T =
4800 At. The respective new flow patterns are presented in Figure 13. It
would appear that an almost symmetric electron space-charge now hovers around
the anode foil above about 1.5 centimeters radius. However, a large fraction
of the electrons still penetrate a centimeter or more into the gas cell before
reflection. This is in agreement with the predictions of Figure 4. The new
currents are I, = 338 kA and Ij = 256.5 kA yielding an ever lower impedance
and only slightly greater ion efficiency than those for the I, = 130 kA case.
The problem seems to be essentially the same as that for the previous case.
An additional difficulty is suggested by the serious distortion of the main-
stream shank electron flow away from the upper anode foil. This could easily
cause degradation of the resultant ion emission.

All of these numerical:results are summarized in Table 1. In this table,
the term "ion production efficiency" is simply defined as I;jg, liiode-
Given the fixed voltage of the device, this ratio represents that fraction of
the net diode power that has been imparted to the ions. The final two items
in the tables are the total specie charges, Q, present in the diode/gas cell
system. When these quantities have c¢nly small fluctuations during a simu-
lation, one knows that the diode has reached an equilibrium state. Note the
jump in Q. when electrons are allowed to fill the gas cell for the Iy = 65 ka
case. The steady reduction of Qg in the subsejuent two cases is indicative
of the decreased volume accessible to the electrons in their more constrained
excursions into the gas cell. Both Ij and Q; steadily increase for increasing
Iy, establishing the effectiveness of the dam at enhancing ion emission. The
disappointing stagnation of the ion efficiency, combined with the consistent
drop in diode impedance, however, indicates a proportional enhancement of
electron emission.

The modest nature of the ion emission enhancement is cobviated by Figure
i4. For the higher values of Iy, otherwise significant gains in J4 on some
regions of the anode foil are offset by the strong suppression of emission in
other regions. This suppression is probably due to the deflection of the main
cathode-shank-to-anode electron stream away from certain arcas of the anode
foil face. Nevert.cless, there is a net gain in ion current. Thus, the true
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Table 1
[ T
\ Iwire(kA) o ! 65 i 136 300
i
e - e eepeiemeate e gt snpesgrabaibe z‘ —e g F.,:{
; Simulation Timestep 2000 : 2400 ' 3600 4800 )
! } :
] ‘ !
T lectront&) 263.5 ; 309 330 : 338 {
j ‘ ?
N )
Iion(kA) 214 i 232.5 : 244 { 256.5 i
{ : ! {
' ! ? t
Idiode(kA) 477.5 4 561.5 l 574 . 594.5 ’
! i !
{
Ion Efficieny 0.448  0.429 ? 0.425 ; 0.431
! \ ;
) ,
% Diode Impedence 8.4 | 7.4 i 7.0  &.7
! .
E Ch ! '
Net Electron Charge - _ L P
{(kilostatcoulombs) 613 858 ’ 873 . 782
: i
Net Ion Charge ! 1
(kilostatcoulombs) +498 339 ; +593 ! +6]5‘j
L i ———- i
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obstacle to higher ion cfficiency is the steady, net gain in electron current
which results in a mild "bootstrapping"’ of the total diode current with
increasing I.

Some insight into the cause of this phenomenon may be derived from a
comparision of the respective equilibriumequipotential plots for cach of the
four cases. These are presented in Figure 15. The plot for I, = 65 is some-
thing of an anamoly. This is understandable, since it has not yet reached a
true steady state. The other Lhree plots, however, show a definite migration
of the potential contours toward the face of the cathode shank. This corre-
sponds to an increased emission there. Electron emission also increased
along the cathode foil for larger values of I,. Interestingly cnough, the
inner and outer shank surfaces showed a decrease in emitted electron current,
perhaps due to the stronger insulating Bg fields which accompanied the larger
net diode currents.

In order to propose more meaningful solutions, it is first necessary to
more closely isolate the source of the excess I.. For that purpose, the
racdial profiles of emitted electron current densities along the cathode shank
face are plotted in Figure 16. Above 4.7 centimeters, the curves are virtually
identical. On the lower half of the face, however the difference i:- marked.
This agrees with the electric field enhancement there suggested in Figure 1°5.
In fact, a full 75% of each increase is accounted for by the increase of I,
from the shank face. Specifically, (Ie)¢otrgl Iincreased 66.5 kA between the
Iw = 0 and Iw = 130 kA cases; the shank face electron emission had increased by
49 kA. The total increase between Iy =130 kA and Iy =300 kA amounted to only
8kA of electrun current; 6 kA of this difference can be attributed to the
shank face. Simply stated, it appears that enhanrced ion emission at higher
radii increases the positive ion space charge in the A-K gap near the shank
face sufficientlyv to enhance electron emission there. This, in turn, prohi-
bited any increase in net ion production efficiency.

In conclusion,therefore, the dam diode pictured in Figure 1 does not
appear to be effective in boosting ion efficiency in its present form. It
does produce enhanced ion current bhut does not simultaneously reduce the diode
electron current. A large part of the blame rests on tle rapid outward radial
migration of electrons along the anode foil and on the large disparity bot-
ween typical electron lifetimes in the gas cell versus those in the ap. This
limits the number of electrons available in the upper A-K gap to neutralizc
the positive space charge arising there due to the increased ion flow. Hence
electric fields and electron emis:iion along the lower face of the cathode
shank are made larger.

A modification which could possibly rectify this situation would be to
invert the radial dependence of the magnetic field streng:h in the anode gas
cell. If it were directly rather than inversely proporticnal to radius, *hen
electron gyroradii would progressively decrease as they moved outward, in-
creasing the "dwell time" of electron space charge in the crucial region bet-
ween R = 3.0 and R = 5.0 centimeters. That would accomplish both an enhance-
ment of ion emission over relatively large surface arecas of the anode foil
and also a probable suppression of electron emission along the cathode shank
face located only one centimeter away. A possible alternative, and one
easier to realize experimei ially, is to absorb all electrons hitting the anode
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foil above, say, 3.0 centimeters while leaving the dam field inversely propor-
tional to radius. This reduces the electron space charge near the anode foil
above r=3, reducing the ion emission above r=3, reducing ion space charge in
the gap above r=3, reducing electric field strengths at the cathode shank face,
reducing electron emission there. This mandates an increase of this diode's
impedance for a fixed gap and voltage. Both of the above mocdifications will
be simulated in future computational experiments to test their ability to
boost the ion production efficiency.
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